Science:​颜宁/闫创业合作解析固醇感受器分子机制

SREBP( sterol regulatory element-binding protein)信号通路通过一系列负反馈机制调控着细胞内固醇类物质的稳态。SREBP 是一类可以结合 sterol 调控元件序列的转录因子,属于 basic-helix-loop-helix leucine zipper (bHLH-zip) 家族。哺乳动物中,SREBP 有三种不同的形式,分别是 SREBP-1a, SREBP-1c 和 SREBP-2。SREBP-1 系列主要负责脂肪的从头合成,a 和 c 在不同的组织中的表达谱不一样;SREBP-2 主要负责胆固醇的代谢和稳态【1,2】

在未激活状态下,SREBP 的 N-terminal 转录因子结构域和 C-terminal 调节结构域由两个跨膜结构域相连,像发卡一样卡在 ER 膜上,并且两端结构域此时都面对着胞质,而连接两个跨膜结构域的 loop 大概有 30 个氨基酸在 ER 的内腔(图 1)。SREBP 的 C-terminal 结构域组成型的结合 Scap (SREBP cleavage-activating protein) 蛋白的 C 端 WD40 结构域。在 WD40 结构域前,Scap 蛋白还包含 8 个跨膜结构域,其中 S2-S6 是固醇感受器结构域(sterol-sensing domain, SSD)【1-3】(图 1)。

当 sterol 比较丰富时,Scap 和另一个 ER 上的膜蛋白 Insig-1/2 (insulin-induced gene) 相互作用,此时 Scap 和 SREBP-2 也相互结合在 ER 的膜上。Scap 和 Insig 的结合需要胆固醇或胆固醇的类似物参与,比如 25-hydroxycholesterol (25HC)。当 sterol 水平下降时,Insig 和 Scap 不再相互作用,此时 Scap 会经历一系列结构变化去暴露出它的膜泡转运信号「MELADL」,于是 Scap 拽着 SREBP-2 一起,会在 COPII 介导的囊泡运输作用下从 ER 转运到高尔基体。一旦到了高尔基体,SREBP-2/Scap 复合物就会遇到活化的蛋白酶,S1P (site-1 protease) 和 S2P。S1P 首先会把 SREBP 两个跨膜结构域的 loop 切断,将 SREBP 分成两个部分,此时每一部分仍然有一个跨膜结构域保留在膜上。随后 S2P 会继续在连接 SREBP N 端结构域的跨膜区切割,于是 SREBP 的 N 端转录因子结构域被释放,然后进核启动相关基因的表达【1-3】(图 1)。

 

Science:​颜宁/闫创业合作解析固醇感受器分子机制

图 1. SREBP 信号通路简化示意图

 

尽管这条信号通路已经发现了几十年,但是具体的结构信息和分子机制仍然尚未被完全阐述。2021 年 1 月 15 日,Science 杂志在线发表了来自颜宁和闫创业合作发表,题为 A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols 的研究长文,通过冷冻电镜技术, 解析了人源 Scap 和 Insig-2 包含 25HC 分子的复合物结构,揭示了固醇类分子调节 SREBP 信号通路的分子机制

 

Science:​颜宁/闫创业合作解析固醇感受器分子机制

为了阐明该信号通路分子机制,在此前,一些低等物种的同源结构也有被陆续解析。比如,来自古细菌的 S2P MjS2P 的晶体结构【4】,分枝杆菌 Insig 同源结构 MvINS【5】,和来自酵母的 SREBP 和 Scap C 端结构域的同源蛋白,Sre1【6】和 Scp1【7】。SSD 结构域在很多蛋白中可见,并且有很多工作已经揭示了 SSD 的结构信息,比如 Niemann-Pick type C (NPC1), Patched 1 (Ptch1), NPC1L1, 和 Dispatched 蛋白的冷冻电镜结构【8-13】。尽管如此,在 SREBP 信号通路中,25HC(或其他类固醇分子)的结合位点和 Scap 与 Insig 的相互作用机制仍然未知。此外,此前报道显示 Insig 结合 25HC 而不是胆固醇,然而 Scap 却只能结合通过它的内腔结构域(Loop1)结合胆固醇。

为了更加清晰的阐述相关分子机制,作者结合生化和冷冻电镜技术,解析了 Scap_Insig-2_25HC 三者的复合物结构。结构中,跨膜结构域的平均分辨率 3.7 Å。Scap 的 SSD 和 Insig-2 的所有跨膜区结构都被解析,其中 25HC 分子像三明治一样夹在 Scap 的 S4-S6 部分和 Insig-2 的 TM3/4 之间(图 2)。

 

Science:​颜宁/闫创业合作解析固醇感受器分子机制

图 2. Insig-2 和 Scap 包含 25HC 的复合物结构

结构显示,Scap 的 S4 中间「解旋」状态部分对于 25HC 的结合和 Insig 相互作用至关重要。Scap 的跨膜结构域与 NPC1 和 Ptch1 类似,但是 Scap 在 S4 区域有一个特别之处 —Scap 的 S4 在中间「断开」形成了一个类似解旋的扭结,使 S4 分成了两个半个的 helix,S4a 和 S4b (图 2)。但在 NPC1 和 Ptch1 的相应区域是完整的。正是由于这个扭结,使得 S4a 向 SSD 内倾斜,给配体的结合腾出了空间。结构和生化实验证明,S4 螺旋的不连续对于配体的结合和与 Insig-2 的相互作用不可或缺。

Insig-2 的结构与此前解析的 MvINS 结构类似。在 MvINS 的晶体结构中,一个内源的 diacyl-glycerol (DAG) 分子插入在 TM1/2/3/5 的中心口袋中。结构类比之后,发现在 Insig-2 的相应区域也有类似的口袋,此前的结构预测该口袋也是用来装固醇类配体的【5,14】。但是,通过解析的结构发现,尽管在相应的区域确实存在一个相似的口袋,但是在口袋内没有观察到任何的电子密度。进一步发现,25HC 实际上是结合在 Scap 和 Insig-2 的相互作用界面。而对于在口袋附近进行氨基酸突变也不会明显影响 25HC 依赖的 Scap-Insig-2 相互作用(图 3),进一步证实了口袋并非结合配体的位置。

 

Science:​颜宁/闫创业合作解析固醇感受器分子机制

图 3. Insig-2 上的口袋对 25HC 结合的影响

总的来说,结合整个结构和生化实验结果,文章较完整的揭示了 Scap 和 Insig-2 之间以 25HC 依赖的方式的跨膜相互作用分子机制(图 4)。

尽管如此,依然还有很多问题需要被解决。比如为什么有了配体的结合后,Scap 的构象就会阻止 MELADL motif 被囊泡的识别,不被转运至高尔基体?在 Scap 上,以胆固醇依赖的方式进行构象改变的 Loop1 是否会耦连 S2 和 S4 的运动?单独的 Scap 和 Insig 结构又长得怎么样?等等一些问题,不是这一个结构可以解释的,不过该结构给这些未来更复杂的问题提供了一定的线索和启示。

 

Science:​颜宁/闫创业合作解析固醇感受器分子机制

图 4. 简化的分子机制模型

颜宁、闫创业为论文共同通讯作者,西湖大学博士后鄢仁鸿、清华大学博士生曹平平、宋闻麒为本文的共同第一作者。冷冻电镜数据分别在国家蛋白质科学中心(北京)清华大学冷冻电镜平台和西湖大学冷冻电镜平台收集,清华大学高性能计算平台和西湖大学超算中心分别为本研究的数据处理提供了支持。

原文链接:

https://science.sciencemag.org/content/early/2021/01/13/science.abb2224

本周推荐:

三句话读懂一篇 CNS,NEJM 报道首次发现癌症母婴传播;基因治疗屡获突破;绘制哺乳动物祖先的基因图谱...

感染新冠后肿瘤自愈,原来这不是第一次了!大自然的「免疫疗法」到底有多神奇?

医生师兄妹结为夫妇后,连发 150 篇论文,一个月开发 20 种新冠疫苗,身价飙升 300 亿

颜宁团队 2021 首秀 + 2020 年度文章赏析,看大牛如何玩转结构生物学!

Cell 重磅:肥胖不但拉低颜值,而且抑制免疫细胞、促进癌细胞生长

砷剂疗法的前世今生:「吃最毒的药,治最难的病」,「砒霜」抗癌再登 Cell 子刊

参考资料:

1. Brown, M. S. et al. Cell 89, 331-340, (1997).

2. Goldstein, J. L. et al. Cell 124, 35-46, (2006).

3. Sakai, J. et al. Cell 85, 1037-1046, (1996).

4. Feng, L. et al. Science 318, 1608-1612, (2007).

5. Ren, R. et al. Science 349, 187-191, (2015).

6. Gong, X. et al. Cell research 25, 401-411, (2015).

7. Gong, X. et al. Cell research 26, 1197-1211, (2016).

8. Gong, X. et al. Cell 165, 1467-1478, (2016).

9. Gong, X. et al. Science 361, (2018).

10. Qi, X. et al. Nature 560, 128-132, (2018).

11. Zhang, Y. et al. Cell 175, 1352-1364. e1314, (2018).

12. Qian, H. et al. Cell 182, 98-111. e118, (2020).

13. Cannac, F. et al. Science Advances 6, eaay7928, (2020).

14. Radhakrishnan, A. et al. Proceedings of the National Academy of Sciences 104, 6511-6518, (2007).

 

征稿

传播有价值的学术报道,解读有深度的学术文章

好文不怕贵,舍得给稿费

微信:biosyj      投稿邮箱:biosmart@dxy.cn

可为课题组代发研究宣传,招聘启事等

Science:​颜宁/闫创业合作解析固醇感受器分子机制
Science:​颜宁/闫创业合作解析固醇感受器分子机制-医学科研网
「好文」,点个好看再走吧!
Science:​颜宁/闫创业合作解析固醇感受器分子机制
生物医学科研方法

中科院研究生被杀案,凶手已被执行死刑

2021-1-18 6:36:31

生物医学科研方法

上海交通大学商明课题组招聘博士后、科研助理

2021-1-18 6:44:44